22 research outputs found

    Selfish Network Creation with Non-Uniform Edge Cost

    Full text link
    Network creation games investigate complex networks from a game-theoretic point of view. Based on the original model by Fabrikant et al. [PODC'03] many variants have been introduced. However, almost all versions have the drawback that edges are treated uniformly, i.e. every edge has the same cost and that this common parameter heavily influences the outcomes and the analysis of these games. We propose and analyze simple and natural parameter-free network creation games with non-uniform edge cost. Our models are inspired by social networks where the cost of forming a link is proportional to the popularity of the targeted node. Besides results on the complexity of computing a best response and on various properties of the sequential versions, we show that the most general version of our model has constant Price of Anarchy. To the best of our knowledge, this is the first proof of a constant Price of Anarchy for any network creation game.Comment: To appear at SAGT'1

    Coalition Resilient Outcomes in Max k-Cut Games

    Full text link
    We investigate strong Nash equilibria in the \emph{max kk-cut game}, where we are given an undirected edge-weighted graph together with a set {1,
,k}\{1,\ldots, k\} of kk colors. Nodes represent players and edges capture their mutual interests. The strategy set of each player vv consists of the kk colors. When players select a color they induce a kk-coloring or simply a coloring. Given a coloring, the \emph{utility} (or \emph{payoff}) of a player uu is the sum of the weights of the edges {u,v}\{u,v\} incident to uu, such that the color chosen by uu is different from the one chosen by vv. Such games form some of the basic payoff structures in game theory, model lots of real-world scenarios with selfish agents and extend or are related to several fundamental classes of games. Very little is known about the existence of strong equilibria in max kk-cut games. In this paper we make some steps forward in the comprehension of it. We first show that improving deviations performed by minimal coalitions can cycle, and thus answering negatively the open problem proposed in \cite{DBLP:conf/tamc/GourvesM10}. Next, we turn our attention to unweighted graphs. We first show that any optimal coloring is a 5-SE in this case. Then, we introduce xx-local strong equilibria, namely colorings that are resilient to deviations by coalitions such that the maximum distance between every pair of nodes in the coalition is at most xx. We prove that 11-local strong equilibria always exist. Finally, we show the existence of strong Nash equilibria in several interesting specific scenarios.Comment: A preliminary version of this paper will appear in the proceedings of the 45th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM'19

    Greedy Selfish Network Creation

    Full text link
    We introduce and analyze greedy equilibria (GE) for the well-known model of selfish network creation by Fabrikant et al.[PODC'03]. GE are interesting for two reasons: (1) they model outcomes found by agents which prefer smooth adaptations over radical strategy-changes, (2) GE are outcomes found by agents which do not have enough computational resources to play optimally. In the model of Fabrikant et al. agents correspond to Internet Service Providers which buy network links to improve their quality of network usage. It is known that computing a best response in this model is NP-hard. Hence, poly-time agents are likely not to play optimally. But how good are networks created by such agents? We answer this question for very simple agents. Quite surprisingly, naive greedy play suffices to create remarkably stable networks. Specifically, we show that in the SUM version, where agents attempt to minimize their average distance to all other agents, GE capture Nash equilibria (NE) on trees and that any GE is in 3-approximate NE on general networks. For the latter we also provide a lower bound of 3/2 on the approximation ratio. For the MAX version, where agents attempt to minimize their maximum distance, we show that any GE-star is in 2-approximate NE and any GE-tree having larger diameter is in 6/5-approximate NE. Both bounds are tight. We contrast these positive results by providing a linear lower bound on the approximation ratio for the MAX version on general networks in GE. This result implies a locality gap of Ω(n)\Omega(n) for the metric min-max facility location problem, where n is the number of clients.Comment: 28 pages, 8 figures. An extended abstract of this work was accepted at WINE'1

    Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases

    Full text link
    Chitin and chitosan oligomers have diverse biological activities with potentially valuable applications in fields like medicine, cosmetics, or agriculture. These properties may depend not only on the degrees of polymerization and acetylation, but also on a specific pattern of acetylation (PA) that cannot be controlled when the oligomers are produced by chemical hydrolysis. To determine the influence of the PA on the biological activities, defined chitosan oligomers in sufficient amounts are needed. Chitosan oligomers with specific PA can be produced by enzymatic deacetylation of chitin oligomers, but the diversity is limited by the low number of chitin deacetylases available. We have produced specific chitosan oligomers which are deacetylated at the first two units starting from the non-reducing end by the combined use of two different chitin deacetylases, namely NodB from Rhizobium sp. GRH2 that deacetylates the first unit and COD from Vibrio cholerae that deacetylates the second unit starting from the non-reducing end. Both chitin deacetylases accept the product of each other resulting in production of chitosan oligomers with a novel and defined PA. When extended to further chitin deacetylases, this approach has the potential to yield a large range of novel chitosan oligomers with a fully defined architecture

    How to gather asynchronous oblivious robots on anonymous rings

    Get PDF
    A set of robots arbitrarily placed on the nodes of an anonymous graph have to meet at one common node and remain in there. This problem is known in the literature as the \emph{gathering}. Robots operate in Look-Compute-Move cycles; in one cycle, a robot takes a snapshot of the current configuration (Look), decides whether to stay idle or to move to one of its neighbors (Compute), and in the latter case makes the computed move instantaneously (Move). Cycles are performed asynchronously for each robot. Moreover, each robot is empowered by the so called \emph{multiplicity detection} capability, that is, a robot is able to detect during its Look operation whether a node is empty, or occupied by one robot, or occupied by an undefined number of robots greater than one. The described problem has been extensively studied during the last years. However, the known solutions work only for specific initial configurations and leave some open cases. In this paper, we provide an algorithm which solves the general problem, and is able to detect all the non-gatherable configurations. It is worth noting that our new algorithm makes use of a unified and general strategy for any initial configuration.Un ensemble de robots placés arbitrairement sur les sommets d'un graphe anonyme doivent se rencontrer sur un sommet commun. Ce problÚme est connu dans la littérature comme le \emph{gathering}. Les robots utilisent des cycles Look-Compute-Move; dans un cycle, un robot prend un instantané de la configuration actuelle (Look), décide de rester inactif ou de se déplacer sur l'un de ses voisins (Compute), et dans ce cas, fait le déplacement (Move). Les cycles sont exécutés de maniÚre asynchrone pour chaque robot. Chaque robot possÚde la capacité de \emph{multiplicity detection}: un robot est capable de détecter au cours de son opération Look si un sommet est vide, occupé par un robot, ou occupé par un nombre indéfini de robots. Le problÚme décrit a été largement étudié au cours des derniÚres années. Toutefois, les solutions connues ne sont valides que pour des configurations initiales spécifiques. Nous fournissons un algorithme qui résout le problÚme général, et est capable de détecter toutes les configurations initiales pour lesquelles le problÚme est impossible. Il est intéressant de noter que notre nouvel algorithme utilise une stratégie unifiée et générale pour chaque configuration initiale

    Gathering of Robots on Anonymous Grids without multiplicity detection

    Get PDF
    International audienceThe paper studies the gathering problem on grid networks. A team of robots placed at different nodes of a grid, have to meet at some node and remain there. Robots operate in Look-Compute-Move cycles; in one cycle, a robot perceives the current configuration in terms of occupied nodes (Look), decides whether to move towards one of its neighbors (Compute), and in the positive case makes the computed move instantaneously (Move). Cycles are performed asynchronously for each robot. The problem has been deeply studied for the case of ring networks. However, the known techniques used on rings cannot be directly extended to grids. Moreover, on rings, another assumption concerning the so-called multiplicity detection capability was required in order to accomplish the gathering task. That is, a robot is able to detect during its Look operation whether a node is empty, or occupied by one robot, or occupied by an undefined number of robots greater than one. In this paper, we provide a full characterization about gatherable configurations for grids. In particular, we show that in this case, the multiplicity detection is not required. Very interestingly, sometimes the problem appears trivial, as it is for the case of grids with both odd sides, while sometimes the involved techniques require new insights with respect to the well-studied ring case. Moreover, our results reveal the importance of a structure like the grid that allows to overcome the multiplicity detection with respect to the ring case

    Chitin and Chitosan as Sources of Bio‐Based Building Blocks and Chemicals

    No full text
    Chitin and chitosan polymers are a valuable source of functional chemicals and materials. Chemical and/or enzymatic depolymerisation processes have been developed for the production of chitooligosaccharides (COS), N‐acetylglucosamine (GlcNAc) and glucosamine (GlcN), which have a wide variety of applications. New technologies are now emerging to convert chitin and its derivatives into platform chemicals. Chemical liquefaction of chitin can lead to bulk chemicals like acetic acid and platform chemicals like hydroxymethylfurfural (HMF) and amine‐containing monomers for polymers, in low yield. The monomers GlcNAc and GlcN can be converted into N‐containing HMF derivatives, opening a pathway for furan‐based monomers for polyamides. Selective catalytic oxidation of GlcN results in the production of D‐glucosaminic acid (DGA). This acid is a valuable building block for the synthesis of various amino acids for biomedical applications and bio‐based chiral polyamides. Further technological improvements are necessary to increase the selectivity and efficiency of reactions, particularly for the conversion of polymeric chitin and chitosan into building blocks.<br/
    corecore